(1)BERTScore:它利用预训练的BERT(来自Transformers的双向编码器表示)模型来计算句子或文本段落之间的相似性得分。它基于BERT获得的场景嵌入来计算相似度,BERT通过考虑每个词的周围场景来捕获语义信息,从而对语言生成任务提供更细致的评估。它已经被证明与人类对文本质量的判断有很好的相关性。使用合适的BERT模型变得至关重要,因为它会影响存储空间和分数的准确性。
© 版权声明
(1)BERTScore:它利用预训练的BERT(来自Transformers的双向编码器表示)模型来计算句子或文本段落之间的相似性得分。它基于BERT获得的场景嵌入来计算相似度,BERT通过考虑每个词的周围场景来捕获语义信息,从而对语言生成任务提供更细致的评估。它已经被证明与人类对文本质量的判断有很好的相关性。使用合适的BERT模型变得至关重要,因为它会影响存储空间和分数的准确性。