图像超分辨率任务的基本目标就是把一张低分辨率的图像超分成其对应的高分辨率图像。无论是基于PNSR还是GAN的监督学习方法,或多或少都会用到pixel-wise误差损失函数,而这往往会导致生成的图像比较平滑,一些细节效果不是很好。于是作者换了一个思路:**以往的方法都是从LR,逐渐恢复和生成HR;如果能找到一个高分辨率图像HR的Manifold,并从该Manifold中搜寻到一张高分辨率的图像使其下采样能恢复到LR,那么搜寻到的那张图像就是LR超分辨率后的结果。**所以本篇文章主要解决了以下的两个问题:
© 版权声明