本文将深入探讨如何通过合理设计线程池和利用异步编程模型,有效优化大规模数据的处理性能。我们将结合 Spring Boot 框架中的 @Async 注解、自定义线程池、以及通过使用 EasyExcel 进行大数据量的 Excel 解析和异步写入数据库的场景,详细说明如何通过分而治之的策略,减少系统的响应时间、提高并发处理能力。同时,还将分析如何基于 CPU 和 IO 密集型任务的特性,来合理设置线程池的核心线程数、最大线程数等参数,以便在实际项目中能够充分发挥硬件资源的性能。
© 版权声明
本文将深入探讨如何通过合理设计线程池和利用异步编程模型,有效优化大规模数据的处理性能。我们将结合 Spring Boot 框架中的 @Async 注解、自定义线程池、以及通过使用 EasyExcel 进行大数据量的 Excel 解析和异步写入数据库的场景,详细说明如何通过分而治之的策略,减少系统的响应时间、提高并发处理能力。同时,还将分析如何基于 CPU 和 IO 密集型任务的特性,来合理设置线程池的核心线程数、最大线程数等参数,以便在实际项目中能够充分发挥硬件资源的性能。