大语言模型(LLM)已成为一种工具,从回答问题到生成任务列表,它们在许多方面简化了我们的工作。如今个人和企业已经使用LLM来帮助完成工作。
代码生成和评估最近已经成为许多商业产品提供的重要功能,以帮助开发人员处理代码。LLM还可以进一步用于处理数据科学工作,尤其是模型选择和试验。
本文将探讨如何将自动化用于模型选择和试验。
借助LLM实现模型选择和试验自动化
我们将设置用于模型训练的数据集和用于自动化的代码。在这个例子中,我们将使用来自Kaggle的。以下是我为预处理过程所做的准备。
import pandas as pddf = pd.read_csv('fraud_data.csv')df = df.drop(['trans_date_trans_time', 'merchant', 'dob', 'trans_num', 'merch_lat', 'merch_long'], axis =1)df = df.dropna().reset_index(drop = True)df.to_csv('fraud_data.csv', index = False)
我们将只使用一些数据集,丢弃所有缺失的数据。这不是最优的过程,但我们关注的是模型选择和试验。
接下来,我们将为我们的项目准备一个文件夹,将所有相关文件放在那里。首先,我们将为环境创建requirements.txt文件。你可以用下面的软件包来填充它们。
openaipandasscikit-learnpyyaml
接下来,我们将为所有相关的元数据使用YAML文件。这将包括OpenAI API密钥、要测试的模型、评估度量指标和数据集的位置。
llm_api_key: "YOUR-OPENAI-API-KEY"default_models:- LogisticRegression- DecisionTreeClassifier- RandomForestClassifiermetrics: ["accuracy", "precision", "recall", "f1_score"]dataset_path: "fraud_data.csv"
然后,我们导入这个过程中使用的软件包。我们将依靠Scikit-Learn用于建模过程,并使用OpenAI的GPT-4作为LLM。
import pandas as pdimport yamlimport astimport reimport sklearnfrom openai import OpenAIfrom sklearn.linear_model import LogisticRegressionfrom sklearn.tree import DecisionTreeClassifierfrom sklearn.ensemble import RandomForestClassifierfrom sklearn.model_selection import train_test_splitfrom sklearn.preprocessing import LabelEncoderfrom sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
此外,我们将设置辅助(helper)函数和信息来帮助该过程。从数据集加载到数据预处理,配置加载器在如下的函数中。
model_mapping = {"LogisticRegression": LogisticRegression,"DecisionTreeClassifier": DecisionTreeClassifier,"RandomForestClassifier": RandomForestClassifier}def load_config(config_path='config.yaml'):with open(config_path, 'r') as file:config = yaml.safe_load(file)return configdef load_data(dataset_path):return pd.read_csv(dataset_path)def preprocess_data(df):label_encoders = {}for column in df.select_dtypes(include=['object']).columns:le = LabelEncoder()df[column] = le.fit_transform(df[column])label_encoders[column] = lereturn df, label_encoders
在同一个文件中,我们将LLM设置为扮演机器学习角色的专家。我们将使用下面的代码来启动它。
def call_llm(prompt, api_key):client = OpenAI(api_key=api_key)response = client.chat.completions.create(model="gpt-4",messages=[{"role": "system", "content": "You are an expert in machine learning and able to evaluate the model well."},{"role": "user", "content": prompt}])return response.choices[0].message.content.strip()
你可以将LLM模型更改为所需的模型,比如来自HuggingFace的开源模型,但我们建议暂且坚持使用OpenAI。
我将在下面的代码中准备一个函数来清理LLM结果。这确保了输出可以用于模型选择和试验步骤的后续过程。
def clean_hyperparameter_suggestion(suggestion):pattern = r'\{.*?\}'match = re.search(pattern, suggestion, re.DOTALL)if match:cleaned_suggestion = match.group(0)return cleaned_suggestionelse:print("Could not find a dictionary in the hyperparameter suggestion.")return Nonedef extract_model_name(llm_response, available_models):for model in available_models:pattern = r'\b' + re.escape(model) + r'\b'if re.search(pattern, llm_response, re.IGNORECASE):return modelreturn Nonedef validate_hyperparameters(model_class, hyperparameters):valid_params = model_class().get_params()invalid_params = []for param, value in hyperparameters.items():if param not in valid_params:invalid_params.append(param)else:if param == 'max_features' and value == 'auto':print(f"Invalid value for parameter '{param}': '{value}'")invalid_params.append(param)if invalid_params:print(f"Invalid hyperparameters for {model_class.__name__}: {invalid_params}")return Falsereturn Truedef correct_hyperparameters(hyperparameters, model_name):corrected = Falseif model_name == "RandomForestClassifier":if 'max_features' in hyperparameters and hyperparameters['max_features'] == 'auto':print("Correcting 'max_features' from 'auto' to 'sqrt' for RandomForestClassifier.")hyperparameters['max_features'] = 'sqrt'corrected = Truereturn hyperparameters, corrected
然后,我们将需要该函数来启动模型和评估训练过程。下面的代码将用于通过接受分割器数据集、我们要映射的模型名称以及超参数来训练模型。结果将是度量指标和模型对象。
def train_and_evaluate(X_train, X_test, y_train, y_test, model_name, hyperparameters=None):if model_name not in model_mapping:print(f"Valid model names are: {list(model_mapping.keys())}")return None, Nonemodel_class = model_mapping.get(model_name)try:if hyperparameters:hyperparameters, corrected = correct_hyperparameters(hyperparameters, model_name)if not validate_hyperparameters(model_class, hyperparameters):return None, Nonemodel = model_class(**hyperparameters)else:model = model_class()except Exception as e:print(f"Error instantiating model with hyperparameters: {e}")return None, Nonetry:model.fit(X_train, y_train)except Exception as e:print(f"Error during model fitting: {e}")return None, Noney_pred = model.predict(X_test)metrics = {"accuracy": accuracy_score(y_test, y_pred),"precision": precision_score(y_test, y_pred, average='weighted', zero_division=0),"recall": recall_score(y_test, y_pred, average='weighted', zero_division=0),"f1_score": f1_score(y_test, y_pred, average='weighted', zero_division=0)}return metrics, model
准备就绪后,我们就可以设置自动化过程了。有几个步骤我们可以实现自动化,其中包括:
1.训练和评估所有模型
2. LLM选择最佳模型
3. 检查最佳模型的超参数调优
4. 如果LLM建议,自动运行超参数调优
def run_llm_based_model_selection_experiment(df, config):#Model TrainingX = df.drop("is_fraud", axis=1)y = df["is_fraud"]X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)available_models = config['default_models']model_performance = {}for model_name in available_models:print(f"Training model: {model_name}")metrics, _ = train_and_evaluate(X_train, X_test, y_train, y_test, model_name)model_performance[model_name] = metricsprint(f"Model: {model_name} | Metrics: {metrics}")#LLM selecting the best modelsklearn_version = sklearn.__version__prompt = (f"I have trained the following models with these metrics: {model_performance}. ""Which model should I select based on the best performance?")best_model_response = call_llm(prompt, config['llm_api_key'])print(f"LLM response for best model selection:\n{best_model_response}")best_model = extract_model_name(best_model_response, available_models)if not best_model:print("Error: Could not extract a valid model name from LLM response.")returnprint(f"LLM selected the best model: {best_model}")#Check for hyperparameter tuningprompt_tuning = (f"The selected model is {best_model}. Can you suggest hyperparameters for better performance? ""Please provide them in Python dictionary format, like {'max_depth': 5, 'min_samples_split': 4}. "f"Ensure that all suggested hyperparameters are valid for scikit-learn version {sklearn_version}, ""and avoid using deprecated or invalid values such as 'max_features': 'auto'. ""Don't provide any explanation or return in any other format.")tuning_suggestion = call_llm(prompt_tuning, config['llm_api_key'])print(f"Hyperparameter tuning suggestion received:\n{tuning_suggestion}")cleaned_suggestion = clean_hyperparameter_suggestion(tuning_suggestion)if cleaned_suggestion is None:suggested_params = Noneelse:try:suggested_params = ast.literal_eval(cleaned_suggestion)if not isinstance(suggested_params, dict):print("Hyperparameter suggestion is not a valid dictionary.")suggested_params = Noneexcept (ValueError, SyntaxError) as e:print(f"Error parsing hyperparameter suggestion: {e}")suggested_params = None#Automatically run hyperparameter tuning if suggestedif suggested_params:print(f"Running {best_model} with suggested hyperparameters: {suggested_params}")tuned_metrics, _ = train_and_evaluate(X_train, X_test, y_train, y_test, best_model, hyperparameters=suggested_params)print(f"Metrics after tuning: {tuned_metrics}")else:print("No valid hyperparameters were provided for tuning.")
在上面的代码中,我指定了LLM如何根据试验评估我们的每个模型。我们使用以下提示根据模型的性能来选择要使用的模型。
prompt = (f"I have trained the following models with these metrics: {model_performance}. ""Which model should I select based on the best performance?")
你始终可以更改提示,以实现模型选择的不同规则。
一旦选择了最佳模型,我将使用以下提示来建议应该使用哪些超参数用于后续过程。我还指定了Scikit-Learn版本,因为超参数因版本的不同而有变化。
prompt_tuning = (f"The selected model is {best_model}. Can you suggest hyperparameters for better performance? ""Please provide them in Python dictionary format, like {'max_depth': 5, 'min_samples_split': 4}. "f"Ensure that all suggested hyperparameters are valid for scikit-learn version {sklearn_version}, ""and avoid using deprecated or invalid values such as 'max_features': 'auto'. ""Don't provide any explanation or return in any other format.")
你可以以任何想要的方式更改提示,比如通过更大胆地尝试调优超参数,或添加另一种技术。
我把上面的所有代码放在一个名为automated_model_llm.py的文件中。最后,添加以下代码以运行整个过程。
def main():config = load_config()df = load_data(config['dataset_path'])df, _ = preprocess_data(df)run_llm_based_model_selection_experiment(df, config)if __name__ == "__main__":main()
一旦一切准备就绪,你就可以运行以下代码来执行代码。
python automated_model_llm.py
输出:
LLM selected the best model: RandomForestClassifierHyperparameter tuning suggestion received:{'n_estimators': 100,'max_depth': None,'min_samples_split': 2,'min_samples_leaf': 1,'max_features': 'sqrt','bootstrap': True}Running RandomForestClassifier with suggested hyperparameters: {'n_estimators': 100, 'max_depth': None, 'min_samples_split': 2, 'min_samples_leaf': 1, 'max_features': 'sqrt', 'bootstrap': True}Metrics after tuning: {'accuracy': 0.9730041532071989, 'precision': 0.9722907483489197, 'recall': 0.9730041532071989, 'f1_score': 0.9724045530119824}
这是我试验得到的示例输出。它可能和你的不一样。你可以设置提示和生成参数,以获得更加多变或严格的LLM输出。然而,如果你正确构建了代码的结构,可以将LLM运用于模型选择和试验自动化。
结论
LLM已经应用于许多使用场景,包括代码生成。通过运用LLM(比如OpenAI GPT模型),我们就很容易委派LLM处理模型选择和试验这项任务,只要我们正确地构建输出的结构。在本例中,我们使用样本数据集对模型进行试验,让LLM选择和试验以改进模型。
原文标题: Model Selection and Experimentation Automation with LLMs 作者:Cornellius Yudha Wijaya