企业宣传,产品推广,广告招商,广告投放联系seowdb

用Keras来理解状态LSTM递归神经网络

在本节中,我们探索“无状态” LSTM的一种变体,该变体学习字母表的随机子序列,并努力构建可以给定任意字母或子序列的模型并预测字母表中的下一个字母。首先,我们正在改变问题的框架。为简化起见,我们将定义最大输入序列长度并将其设置为5之类的小值,以加快训练速度。这定义了将要训练的字母子序列的最大长度。在扩展名中,如果我们允许循环回到序列的开头,则可以将其设置为全字母(26)或更长。我们还需要定义要创建的随机序列的数量,在这种情况下为1000。这可能会或多或少。我希望实际需要的模式更少。

© 版权声明
评论 抢沙发
加载中~
每日一言
不怕万人阻挡,只怕自己投降
Not afraid of people blocking, I'm afraid their surrender